Copied to
clipboard

G = C72:3C9order 441 = 32·72

3rd semidirect product of C72 and C9 acting via C9/C3=C3

metabelian, supersoluble, monomial, A-group

Aliases: C72:3C9, C7:2(C7:C9), C21.4(C7:C3), (C7xC21).3C3, C3.(C72:3C3), SmallGroup(441,7)

Series: Derived Chief Lower central Upper central

C1C72 — C72:3C9
C1C7C72C7xC21 — C72:3C9
C72 — C72:3C9
C1C3

Generators and relations for C72:3C9
 G = < a,b,c | a7=b7=c9=1, ab=ba, cac-1=a2, cbc-1=b4 >

Subgroups: 84 in 16 conjugacy classes, 9 normal (5 characteristic)
Quotients: C1, C3, C9, C7:C3, C7:C9, C72:3C3, C72:3C9
3C7
3C7
49C9
3C21
3C21
7C7:C9
7C7:C9

Smallest permutation representation of C72:3C9
On 63 points
Generators in S63
(1 27 29 49 11 44 56)(2 30 12 57 19 50 45)(3 13 20 37 31 58 51)(4 21 32 52 14 38 59)(5 33 15 60 22 53 39)(6 16 23 40 34 61 54)(7 24 35 46 17 41 62)(8 36 18 63 25 47 42)(9 10 26 43 28 55 48)
(1 56 44 11 49 29 27)(2 50 57 30 45 19 12)(3 37 51 20 58 13 31)(4 59 38 14 52 32 21)(5 53 60 33 39 22 15)(6 40 54 23 61 16 34)(7 62 41 17 46 35 24)(8 47 63 36 42 25 18)(9 43 48 26 55 10 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)

G:=sub<Sym(63)| (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)>;

G:=Group( (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63) );

G=PermutationGroup([[(1,27,29,49,11,44,56),(2,30,12,57,19,50,45),(3,13,20,37,31,58,51),(4,21,32,52,14,38,59),(5,33,15,60,22,53,39),(6,16,23,40,34,61,54),(7,24,35,46,17,41,62),(8,36,18,63,25,47,42),(9,10,26,43,28,55,48)], [(1,56,44,11,49,29,27),(2,50,57,30,45,19,12),(3,37,51,20,58,13,31),(4,59,38,14,52,32,21),(5,53,60,33,39,22,15),(6,40,54,23,61,16,34),(7,62,41,17,46,35,24),(8,47,63,36,42,25,18),(9,43,48,26,55,10,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)]])

57 conjugacy classes

class 1 3A3B7A···7P9A···9F21A···21AF
order1337···79···921···21
size1113···349···493···3

57 irreducible representations

dim1113333
type+
imageC1C3C9C7:C3C7:C9C72:3C3C72:3C9
kernelC72:3C9C7xC21C72C21C7C3C1
# reps126481224

Matrix representation of C72:3C9 in GL4(F127) generated by

1000
03200
00640
0008
,
1000
0400
00160
0002
,
99000
0010
0001
0100
G:=sub<GL(4,GF(127))| [1,0,0,0,0,32,0,0,0,0,64,0,0,0,0,8],[1,0,0,0,0,4,0,0,0,0,16,0,0,0,0,2],[99,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C72:3C9 in GAP, Magma, Sage, TeX

C_7^2\rtimes_3C_9
% in TeX

G:=Group("C7^2:3C9");
// GroupNames label

G:=SmallGroup(441,7);
// by ID

G=gap.SmallGroup(441,7);
# by ID

G:=PCGroup([4,-3,-3,-7,-7,12,434,2019]);
// Polycyclic

G:=Group<a,b,c|a^7=b^7=c^9=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C72:3C9 in TeX

׿
x
:
Z
F
o
wr
Q
<